Wie löst man eine quadratische Gleichung $ax^2 + bx + c = 0$; $a \neq 0$?

Ein gängiger Lösungsweg ist der folgende:

Aus der gegebenen Gleichung folgt $x^2 + \frac{b}{a} \cdot x + \frac{c}{a} = 0 \implies (x + \frac{b}{2a})^2 - (\frac{b}{2a})^2 + \frac{c}{a} = 0 \implies$

$$(x + \frac{b}{2a})^2 = (\frac{b}{2a})^2 - \frac{c}{a} \implies x + \frac{b}{2a} = \pm \sqrt{(\frac{b}{2a})^2 - \frac{c}{a}} \implies x = -\frac{b}{2a} \pm \sqrt{(\frac{b}{2a})^2 - \frac{c}{a}}$$

wir erhalten die sog. "Mitternachtsformel" $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Für die Diskriminante $D = b^2 - 4ac$ gibt es jetzt 3 Möglichkeiten:

- 1. D=0: Lösung ist reell (doppelt): $x_{1/2} = -\frac{b}{2a}$
- 2. D > 0: Lösungen sind reell: $x_{1/2} = \frac{-b \pm \sqrt{D}}{2a}$
- 3. D < 0: Lösungen sind konjugiert komplex : $x_{1/2} = \frac{-b \pm i \cdot \sqrt{-D}}{2\pi}$

Dass diese Formeln nicht immer zu zufriedenstellenden Lösungen führen (numerische Instabilität) wird nachfolgend gezeigt!

Die folgenden Beispiele werden mit dem Datentyp "double" von Java17 durchgerechnet; es steht so eine Präzision von 16 Stellen zur Verfügung.

Beispiel 1: $3x^2 - 9 \cdot x + 6 = 0$

Theoretisch gilt: $D = 9^2 - 4.18 = 9 > 0$

$$x = [9 \pm \sqrt{(9)}]/6 = (9 \pm 3)/6$$
 Lösungen: $x = 2$ sowie $x = 1$

Was macht der Computer mit seiner double-Präzision ??

D = 9.0 $\sqrt{(D)} = 3.0$

 $(-b+\sqrt{(D)}) = 12.0$

 $(-b-\sqrt{(D)}) = 6.0$

 $(-b+\sqrt{(D)})/(2*a) = 2.0$

 $(-b-\sqrt{(D)})/(2*a) = 1.0$

Dies sind die korrekten Lösungen!

Beispiel 2 (Problembeispiel): $x^2 - 10^8 \cdot x + 1 = 0$

Da der Wurzelwert nicht rational ist betrachten wir sehr präzise Näherungen (55 Stellen):

Bilden wir nun -b - $\sqrt{(D)}$, so erhalten wir

Wir teilen noch durch 2a = 2 und erhalten die erste Näherungslösung

Für $(-b + \sqrt{(D)})/2a$ erhalten wir die zweite Näherungslösung

Was macht der Computer mit seiner double-Präzision ??

D = 9.999999999996E15

 $-b-\sqrt{(D)} = 1.4901161193847656E-8$ [-b- $\sqrt{(D)}$] / (2a) = 7.450580596923828E-9

-b+V(D) = 2.0E8 [-b+V(D)] / (2a) = 1.0E8

Wir sehen, dass insbesondere die nahe bei 0 liegende Lösung sehr ungenau ist ! Die Abweichung beträgt etwa 25%. Die Ungenauigkeit ergibt sich deswegen, weil |b| viel größer ist als |c|! Dadurch liegt der Wurzelwert nahe bei -b (b ist hier negativ !) und im Zähler des Bruches entsteht näherungsweise -b - (-b) = 0 sowie -b + (-b) = -2b.

Fazit / Tipp: Bei Anwendung der Mitternachtsformel sollte erst die betragsgrößte Nullstelle ermittelt werden; dann mittels des Satzes von VIETA (x₁·x₂ = c / a .) die andere Lösung berechnen; das wäre dann 1·10⁻⁸!

<u>Vorsicht:</u> Der Satz von VIETA: $x_1 \cdot x_2 = c / a \rightarrow x_2 = c / a / x_1$ lässt sich nur dann verwenden, wenn $x_1 \neq 0$! Daher müssen erst die Fälle für x = 0 geklärt werden.

Vorgehensweise bei Verwendung der "Mitternachtsformel" :

$$a \cdot x^2 + b \cdot x + c = 0$$
; mit $a \neq 0$ ist zu lösen:

Sonderfall $b = 0 \land c = 0$: Lösungen: $x_{1/2} = 0$

Sonderfall $c \neq 0 \land b = 0$: Lösungen: $x_{1/2} = \pm \sqrt{-\frac{c}{a}}$

Sonderfall $c = 0 \land b \neq 0$: Lösungen: $x_1 = 0$; $x_2 = -\frac{b}{a}$

Für den restlichen Fall $b \neq 0 \land c \neq 0$: Zuerst die Diskriminante $D = b^2 - 4ac$ bestimmen:

- 1. D=0: Lösung ist reell (doppelt): $x_{1/2} = -\frac{b}{2a}$
- 2. D>0: Lösungen sind reell: $x_1 = \frac{-b \text{sgn}(b) \cdot \sqrt{D}}{2a}$ (betragsgrößte L.); $x_2 = \frac{c}{a \cdot x_1}$
- 3. D < 0: Lösungen sind konjugiert komplex : $x_1 = (\frac{-b}{2a}, i \cdot \frac{\sqrt{-D}}{2a})$; $x_2 = (\frac{-b}{2a}, -i \cdot \frac{\sqrt{-D}}{2a})$

Für das obige numerisch problematische Beispiel 2) gilt dann (mit "double"-Präzision):

$$x_1 = \frac{10^8 + \sqrt{10^{16} - 4}}{2} = 1.0E8; \quad x_2 = \frac{1}{x_1} = 1.0E-8$$

Es gibt noch eine weitere (etwas aufwändige Möglichkeit) zur Bestimmung der betragskleinsten Lösung in problematischen Fällen.

Dazu muss die Mitternachtsformel so umgeformt werden, dass der Wurzelterm im Nenner steht:

Aus der Mitternachtsformel:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 folgt
$$x = \frac{(-b \pm \sqrt{b^2 - 4ac}) \cdot (-b \mp \sqrt{b^2 - 4ac})}{2a \cdot (-b \pm \sqrt{b^2 - 4ac})} \Rightarrow x = \frac{b^2 - \sqrt{b^2 - 4ac}^2}{2a \cdot (-b \pm \sqrt{b^2 - 4ac})} \Rightarrow x = \frac{b^2 - (b^2 - 4ac)}{2a \cdot (-b \pm \sqrt{b^2 - 4ac})} \Rightarrow x = \frac{b^2 - (b^2 - 4ac)}{2a \cdot (-b \pm \sqrt{b^2 - 4ac})} \Rightarrow x = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$$
Die betragskleinste der beiden Lösungen ist hierbei $x = \frac{2c}{-b - \text{sgn}(b) \cdot \sqrt{b^2 - 4ac}}$

Für die betragskleinste Lösung ergibt sich hier bei double-Präzision der Wert 1.0E-8!