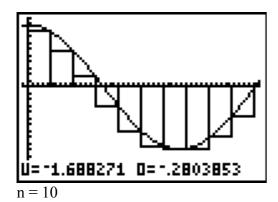
Natürlich nicht! Flächeninhalte A sind stets positiv. Aber es kann vorkommen, dass Flächeninhaltsfunktionen $A_0(x)$ negative Ergebnisse liefern. Sogar Null als Ergebnis ist möglich.

Wie kommt es dazu?

Folgendes Beispiel mit f(x) = cos(x) im Intervall [0; 1,5 π] diene der Veranschaulichung:

Es werden verschiedene Zerlegungen n verwendet und jeweils die Untersumme U_n dargestellt. Berechnet werden aber sowohl U_n als auch O_n , damit eine Intervallschachtelung erkennbar ist .





Eine weitere Berechnung (ohne Grafik) liefert bei Angabe von 7 Ziffern $U_{100} = -1,070487$ $O_{100} = -0,9291488$

<u>Feststellung:</u> Sowohl die Untersummen als auch die Obersummen sind jeweils negativ. Man kann daraus schließen, dass auch der gemeinsame Grenzwert der Untersummen und Obersummen, nämlich $A_o(1,5\pi)$ negativ ist .

Aufgaben:

- 1) Warum ist hier $A_0(1.5\pi)$ negativ? Formuliere schriftlich eine geometrische Begründung.
- 2) Gib aufgrund der obigen Ergebnisse eine Intervallschachtelung für das gesuchte $A_o(1.5\pi)$ an.
- 3) Berechne die jeweiligen Mittelwerte der Intervalle und gib einen Schätzwert für $A_o(1,5\pi)$ an.
- 4) Suche die zu $f(x) = \cos(x)$ gehörige Funktion $A_o(x)$ und berechne damit den exakten Wert für $A_o(1,5\pi)$. Beachte, dass damit <u>nicht</u> der zwischen $\cos(x)$ und x-Achse liegende Flächeninhalt A (gesamte eingeschlossene Fläche) berechnet wird. Überlege, wie man dieses A berechnen könnte und führe die Berechnung aus !
- 5) Zusatzaufgabe mit anderer Funktion:

Berechne exakt den zwischen dem Grafen von $f(x) = \sin(x)$ und x-Achse in $[0;2\pi]$ eingeschlossenen Flächeninhalt A . Welchen Wert hat hier $A_o(2\pi)$?