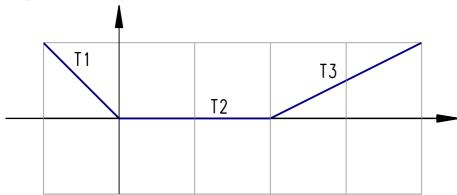
Trassierung (Einführung)

Aufgabenstellung:



Das Teilstück T2 soll durch eine ganzrationale Funktion f ersetzt werden, so dass eine knickfreie Straße entsteht.

Lösungsweg:

In Frage kommen:

- 1) Ganzrationale Funktionen 3. Ordnung oder 5. Ordnung
- 2) Trigonometrische Funktionen der Form A*sin(Bx+C) + D*cos(Ex+F)

Die Bedingungen f(0) = 0 f(2) = 0 f'(0) = -1 f'(2) = 0,5 legen einen Ansatz folgender Form nahe:

$$f(x) = Ax^3 + Bx^2 + Cx + D$$

Man erkennt sofort, dass D = 0 und C = -1 sein müssen. Es bleibt ein 2x2 - LGS übrig, das mit dem **Gaußschen Eliminationsverfahren** gelöst wird :

Die gesuchte Funktion ist $f(x) = -\frac{1}{8}x^3 + \frac{3}{4}x^2 - x$

Aufgabe: Berechne mit einem CAS – Rechner näherungsweise die Bogenlänge des Kurvenstücks!

<u>Lösung:</u> Bogenlänge ≈ 2,1832 LE

Nimmt man zu den obigen 4 Bedingungen noch die **Ruckfreiheit** ("Lenkradruck") an den Übergangsstellen hinzu, so ergeben sich 2 weitere Bedingungen f "(0) = 0 und f "(2) = 0.

Es muss aber dann eine ganzrationale Funktion 5. Grades angesetzt werden:

$$f_2(x) = Ax^5 + Bx^4 + Cx^3 + Dx^2 + Ex + F$$

Die 6 Bedingungen liefern dann:

F = 0 E = -1 D = 0

Somit bleibt ein 3x3 – LGS übrig:

$$I \quad 32A + 16B + 8C = 2$$

II
$$80A + 32B + 12C = 1.5$$

III
$$160A + 48B + 12C = 0$$

Der Einfachheit halber verwenden wir im folgenden eine Matrixschreibweise (Tabelle!).

A	В	С	1
32	16	8	2
80	32	12	1,5
160	48	12	0

Überlege, welche Operationen sinnvoll wären?

Am leichtesten lässt sich C eliminieren! Daher dividieren wir Gleichung I durch 2:

A	В	С	1	Operation
16	8	4	1	_
80	32	12	1,5	$II - 3 \cdot I$
160	48	12	0	III - II

A	В	С	1	Operation
16	8	4	1	_
32	8	0	-1,5	: 8
80	16	0	-1,5	III – 2 · II

A	В	С	1	Operation
16	8	4	1	I – III
4	1	0	-0,1875	$4 \cdot II - III$
16	0	0	+1,5	: 16

A	В	С	1	Operation
0	8	4	-0,5	$I-2\cdot II$
0	4	0	-2,25	: 4
1	0	0	0,09375	-

A	В	С	1	Operation
0	0	4	4	: 4
0	1	0	-0,5625	-
1	0	0	0,09375	-

A	В	С	1	Operation
0	0	1	1	-
0	1	0	-0,5625	-
1	0	0	0,09375	-

Wir lesen ab:
$$A = 0.09375 = \frac{3}{32}$$
 $B = -0.5625 = -\frac{9}{16}$ $C = 1$

Also ist
$$f_2(x) = \frac{3}{32} x^5 - \frac{9}{16} x^4 + x^3 - x$$

Anmerkung: Die Bogenlänge im Intervall [0;2] beträgt ≈ 2,2693 LE!

Eine dritte Möglichkeit der Trassenführung liefert die folgende trigonometrische Funktion:

$$f_3(x) = \frac{3}{2\pi} \cdot \sin(\frac{\pi}{2} \cdot x) - \frac{1}{4\pi} \cdot \sin(\pi \cdot x)$$

Aufgaben:

- 1) Bestimme die Bogenlänge für f_3 .
- 2) Berechne für alle 3 Funktionen die Fläche zwischen dem Grafen und der x-Achse. Welche wirtschaftlichen Überlegungen sind mit diesen Flächen verbunden?
- 3) Zeichne die gesamte Strassenführung mit allen 3 Funktionen sowie T1 und T2 mithilfe eines CAS-Systems.

Grafik:

